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Lecture outline
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• Recap of occupancy mapping

• Semantics?

• Metric-semantic mapping

• Open-vocabulary semantic mapping

• Scene Graphs

• Adding time to semantic maps



Occupancy Mapping



Capabilities supported by 
occupancy maps

• Global path planning given a goal point

• Local path planning / Obstacle avoidance

• Replanning around blockages

• Localization

• Navigation

• Docking

• Frontier-based exploration

• ...



Applications
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Limitations

“Move the chair closer to the table”

• Object instances?

• Object extents?

• Affordances?

• Grid independence?

Occupancy not enough for complex tasks 

(mobile manipulation, natural HRI)



Semantics?



Semantics
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• Meaning of things and words

• Grounding of symbols in reality

Enable decisions that depend on:

• Object identity (shelf vs wall)

• Function (charging stations)

• Affordances (door is openable)

• Human language (“move the chair”)



Semantic Mapping
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Vocabulary

Chair [seat, move, …]

Table [carrier, …]

Mug [drink, move, …]

Door [open, close, pass, …]

…

Perception
Mapping

Chair

Chair

Door

Table

Table

Mug



Where do you get semantics?
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RGB camera

Mask2Former, YOLO, Segment Anything…

LiDAR

RangeNet++, RandLA-net…

Requires raycasting!



Metric-semantic mapping



Extending Occupancy Mapping
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• Occupancy maps: O = {occupied, free}

• Semantic maps: C = {chair, table, door, mug, …}

• Both are categorical distributions Cat 𝐾, 𝒑
• 𝐾 > 0 number of categories (𝐾 = 2 for occupancy map, Bernoulli distribution)

• 𝒑 = (𝑝1, 𝑝2, … , 𝑝K) probabilities of individual categories (𝑝𝑖 ≥ 0, σ𝑝𝑖 = 1)

• Mode (i.e., most likely category): 𝑖 ∣ 𝑝𝑖 = max 𝑝1, … , 𝑝K



Semantic mapping as Bayesian inference
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• For any map voxel Cat(𝐾, 𝒗):
𝒗 = 𝑣1, … , 𝑣𝐾 where 𝑣𝑖 ≥ 0 and σ𝑣𝑖 = 1

• Measurement (one-hot):

𝐲 = 𝑦1, … , 𝑦K , where 𝑦i ∈ {0,1} and σ𝑦𝑖 = 1

• Categorical likelihood: 𝑝 𝒚 𝒗 = ς𝑣𝑖
𝑦𝑖

But how to find posterior 𝑝(𝒗|𝒚)?

𝒚 = 0,1,0,0, …

bed

𝒚 = 0,0,1,0, …

chair



Dirichlet conjugate prior for categorical distributions
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For any categorical distribution Cat 𝐾, 𝒗 :

• Given a concentration hyperparameter 𝜶 = 𝛼1, … , 𝛼𝐾

• Dirichlet (conjugate) prior: 𝑝 𝒗 𝜶 ∼ Dir 𝐾, 𝜶 =
1

B 𝜶
ς𝑣𝑖

𝛼𝑖−1

• 𝒄 = 𝑐1, … , 𝑐𝐾 , number of observations of each category

• 𝜶′ = 𝒄 + 𝜶 = 𝑐1 + 𝛼1, … , 𝑐𝐾 + 𝛼𝐾 , and 𝑆 𝜶′ = σ𝛼𝑖
′

Then:

𝑝 𝒗 𝒄, 𝜶 ∼ Dir 𝒄 + 𝜶 ∼ Dir 𝜶′

𝔼 𝑣𝑖 =
𝛼𝑖
′

𝑆 𝜶′
𝕍 𝑣𝑖 =

𝛼𝑖
′ 𝑆 𝜶′ − 𝛼𝑖

′

𝑆 𝜶′ 2 𝑆 𝜶′ + 1



Back to semantic mapping

15

𝔼 𝑣𝑖 =
𝛼𝑖
′

𝑆 𝜶′
and 𝔼 𝒗 = argmax𝑖 𝑣𝑖

𝒚 = 0,1,0,0, …
bed𝒚 = 0,0,1,0, …

chair

𝜶′ = 1,2,1,1, …

𝜶′ = 1,1,2,1, …

𝜶 = 1,1,1,1,1,1,1,1,1

S(𝜶′) = 10

𝒗 = 0.1, 0.2, 0.1, …

𝒗 = 0.1, 0.1, 0.2, …

Gan, Lu, et al. "Bayesian spatial kernel smoothing for scalable dense semantic mapping."

IEEE Robotics and Automation Letters 5.2 (2020): 790-797.



3D meshes instead of voxels (e.g., KIMERA)
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A. Rosinol, et al. “Kimera: From SLAM to spatial perception with 3D dynamic scene graphs,” 

The Int. J. of Robotics Research, vol. 40, no. 12-14, pp. 1510–1546, 2021



A lot is borrowed from Visual SLAM
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Panoptic Maps for object instances
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Narita, Gaku, et al. "Panopticfusion: Online volumetric semantic mapping at the level of stuff and things.«

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019.



What have we fixed?
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• Object instances?

• Object extents?

• Affordances?

• Grid Independence?



Some efforts on addressing grid independence

20

Object-Oriented Grid Mapping in Dynamic Environments

Matti Pekkanen, Francesco Verdoja, and Ville Kyrki 

2024 IEEE Int. Conf. on Multisensor Fusion and Integration for Intelligent 

Systems (MFI), 2024 



• Semantic-aware navigation

• “stay on the road”

• “stop at pedestrian crossings”

• “never go closer than 2m to a tree”

• “rest close to a wall”

What can we do?

21



New challenges
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Class bleeding at boundaries

(RGB+D calibration)

High memory footprint

(submapping)

Complex map update and

vocabolary extension

moved

new



Beyond metric-semantic mapping

Open-vocabulary

Not limited to a closed set 

of predefined semantic 

labels

From voxels to concepts

Voxels are part of objects, 

rooms, and other semantic 

entities

23

From 3D to 4D+

Reasoning and handling 

dynamic environments over 

time



Open-vocabulary semantic maps



Visual-Language Models
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• Coupled Transformer Neural Networks

• Text: to 𝑁-dim embedding 𝑇

• Images: to 𝑁-dim embeddings 𝐼

• Trained on (image, text caption) dataset

• Minimize distance between 𝑇 and 𝐼 for 

(image, caption) pair

• Maximize distance between 𝑇 and 𝐼 for 

non-pairs

• CLIP from OpenAI: 512-dim embedding
Radford, Alec, et al. "Learning transferable visual models from natural language 

supervision." International conference on machine learning. PmLR, 2021.



Embeddings and Cosine Similarity
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Embeddings

• 𝑁-dim vectors 𝐀 = 𝐴1, … , 𝐴𝑁

• Often for VLMs they are unit-size, i.e., 𝐀 = 1

Cosine similarity

• 𝑆𝐶 𝐴, 𝐵 ≔ cos 𝜃 =
𝐀⋅𝐁

‖𝐀‖‖B‖
=

σ𝑖=1
N 𝐴𝑖𝐵𝑖

σ𝑖=1
N 𝐴𝑖

2⋅ σ𝑖=1
N 𝐵𝑖

2

• 𝑆𝑐 ∈ −1,1 , with -1 opposite, +1 same, 0 orthogonal

𝐀

𝐁
𝜃



Querying the model
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Pixel-level CLIP embeddings (e.g., LSeg)
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Li, Boyi, et al. "Language-driven Semantic Segmentation." 

2022 International Conference on Learning Representations (ICLR), 2022.



Maps of Embeddings (e.g., VLMap)
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Huang, Chenguang, et al. "Visual Language Maps for Robot Navigation." 

2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.



Open-vocabulary Querying

30

Painting Kitchen Work

Matti Pekkanen, Tsvetomila Mihaylova, Francesco Verdoja, and Ville Kyrki, “Do Visual-Language Grid Maps Capture Latent Semantics?”

2025 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), IEEE, 2025.



Robot interaction and planning (e.g., NLMap + SayCan)

31

Chen, Boyuan, et al. "Open-vocabulary Queryable Scene Representations for Real World Planning." 

2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023.



Challenges
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Quality is highly dependant 

on VLM performance

Maps are even larger

(WxLxHx512)

What happens for queries 

with missing target?

Apple?



From voxels to concepts



The environment is hierarchical
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3D Scene Graphs (3DSGs)
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A. Rosinol, et al. “Kimera: From SLAM to spatial perception with 3D dynamic scene 

graphs,” The Int. J. of Robotics Research, vol. 40, no. 12-14, pp. 1510–1546, 2021

• Hierarchical graph representation

• Objects, places, and rooms as nodes

• attributes (pose, shape, affordances)

• connected to 3D mesh

• Belong to semantic layers

• Edges describe relations

• spatial (adjacency, inclusion, support)

• functional (used-for, part-of)

• …



Building a 3D Scene Graph
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Hughes, Nathan, Yun Chang, and Luca Carlone. "Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization." 

Robotics: Science and Systems. 2022.



Hydra in action
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Aaron Ray, et al. "Task and Motion Planning in Hierarchical 3D Scene Graphs," 

International Symposium of Robotics Research (ISRR), 2024



Scene graphs + embeddings (e.g., ConceptGraph)
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Gu, Qiao, et al. "Conceptgraphs: Open-vocabulary 3d scene graphs for perception and planning." 

2024 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2024.



Using scene graphs in planning (e.g., SayPlan)
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Rana, Krishan, et al. "SayPlan: Grounding Large Language Models using 3D Scene Graphs for Scalable Robot 

Task Planning." Conference on Robot Learning. PMLR, 2023.



From 3D to 4D+



Dynamic Scene Graphs (e.g., Khronos)

41

Schmid, Lukas, et al. "Khronos: A Unified Approach for Spatio-Temporal Metric-Semantic SLAM in Dynamic 

Environments." Robotics: Science and Systems. 2024.



Updatable Scene Graphs (e.g., REACT)

42

Phuoc Nguyen, Francesco Verdoja, and Ville Kyrki

REACT: Real-time Efficient Attribute Clustering and Transfer 

for Updatable 3D Scene Graph

2025 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems 

(IROS), Oct 2025 



Event-Grounding Graphs (EGG)

43

Nguyen, Phuoc, Francesco Verdoja, and Ville Kyrki. "Event-Grounding Graph: Unified Spatio-Temporal Scene Graph from Robotic Observations." 

arXiv preprint arXiv:2510.18697 (2025), submitted to IEEE Robotics and Automation Letters (RA-L).



Takeaways



Semantic mapping is evolving rapidly

45

2020 2023 2025



Trends
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Challenges and open problems 

• Lifelong mapping: memory, forgetting, and map aging

• Domain shift and generalization: self-supervised and foundation models, VLMs, LLMs...

• Multi-robot semantic mapping and map merging

• Task-specific maps: sub-graph selection, planning domain generation

• Dynamic scenes: moving objects, time-dependent scene graphs

47



Thank you

Francesco Verdoja

fverdoja.github.io
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